
Ph N
CH3

O
OCH3

CH3

Li •

H
H

OH3CO
Ph O

CH3

•
H
H

O O
CH2

OH
H3C

Ph

1 2a 3 4

OCH3

91% yield

H

Ph
CN

CH3
Ph N

CH3

•
H
H

O OCH3

Li

O
CH2

NHR
H3C

Ph

5a

a
2a

6

b

c 7a  R = H
8a  R = Ac

73% yield

TETRAHEDRON
LETTERS

Tetrahedron Letters 42 (2001) 2419–2422Pergamon

An imino Nazarov cyclization
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Abstract—a-Aminocyclopentenones are available in a single operation from a,b-unsaturated nitriles and (methoxy)-
methoxyallenes. The cyclization is equivalent to an imino Nazarov reaction. © 2001 Elsevier Science Ltd. All rights reserved.

In earlier work we have described several variants of
the classical Nazarov reaction1 in which allenyl
ketones2 or allenyl alcohols3 were cyclized to cross-con-
jugated cyclopentenones. For example (Eq. (1)), Wein-
reb amide 1 underwent addition with allenyl
nucleophile 2a to produce the putative intermediate
ketone 3 which underwent spontaneous cyclization to
cyclopentenone 4 in high yield upon workup.4 We
wondered whether addition of allenyl nucleophiles to
a,b-unsaturated nitriles might lead to imine intermedi-
ates, acid-catalyzed cyclization of which would generate
a-aminocyclopentenones. Such a reaction would be
potentially very useful, inter alia, for alkaloid synthesis.

Our preliminary results are summarized in Scheme 1.
Addition of a-lithio-a-(methoxy)methoxyallene5 2a to
a-methylcinnamonitrile 5a at −78°C led to a solution of
lithioimine 6, which was quenched with saturated
aqueous ammonium dihydrogen phosphate. Protona-
tion of 6 was followed by spontaneous cyclization to
a-aminocyclopentenone 7a. This material could be iso-
lated following aqueous workup and flash column chro-
matography on silica gel, however, it was much more
convenient to convert crude 7a to acetamide 8a, and
then perform the chromatographic purification on 8a
(vide infra). A number of protic acids under a variety of
reaction conditions were examined for the cyclization

(1)

Scheme 1. (a) THF, −78°C, 1 h; (b) satd aq (NH4)H2PO4, −78°C to rt, 30 min; (c) Ac2O, pyr, cat. DMAP, rt, 18 h.
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step leading to 7a. Best results were obtained with
ammonium dihydrogen phosphate.

The a,b-unsaturated nitrile starting materials were pre-
pared through straightforward application of conven-
tional methods.6 The scope of the cyclization can be
assessed through the examples listed in Table 1.7

Overall yields of the cyclized products were generally
good. However, in the case of 5c, product 8c was
accompanied by significant quantities of diene 9 (40%
isolated yield). The appearance of this byproduct is due-
to competing g-deprotonation of 5c, followed by cleav-
age of one of the two C�O bonds of the ethylene ketal

function. Acetylation of the free hydroxyl group led to
9. The a,b-unsaturated nitriles were less reactive as
electrophiles than the a,b-unsaturated Weinreb- and
morpholino amides which we had examined previously.
The reaction of cinnamonitrile failed to produce cyclic
product, so it appears that a non-hydrogen substituent
at the a-carbon atom of the unsaturated nitriles is
required.4

In earlier work we had shown that in cyclopentannela-
tions with g-substituted allenes, the Z isomers at the
exocyclic double bond of the cyclic products are kineti-
cally favored.8,9 Therefore, the variation in the isomeric
ratios of products derived from allenes 2b and c,10 which

Table 1. Aminocyclopentenonesa

a Yields refer to isolated overall yields (two steps) of chromatographed products. Isomeric ratios were determined gravimetrically, following
chromatography, with the exception of 10g, in which case the ratio of isomers was estimated by 1H NMR.
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are reported in Table 1 probably reflects different
degrees of isomerization of the kinetically formed Z
isomers to the thermodynamically favored E isomers.
The isomerization takes place during the acid-catalyzed
cyclization, but also during the acetylation step.

The a-aminocyclopentenones (e.g. 7a) were isolable as
pure products following flash column chromatography
on silica gel, but they were not stable to storage.
Decomposition to produce dark, viscous material took
place with an induction period which was not consis-
tent from run to run. The decomposition pathway is
probably polymerization by nucleophilic attack of the
free amino group of one molecule upon the activated
enone of another, and may be catalyzed by adventitious
acid. In contrast to the free amines, the acetamides
were stable to storage for several weeks at room
temperature.

(2)

It is noteworthy that calculations by Smith11 have
indicated that the classical imino Nazarov reaction is
energetically disfavored: the calculated difference in
energy between the acyclic pentadienyl cation 11 and
the cyclic allyl cation 12 invariably favors the acyclic
product (Eq. (2)). Electron donation by the amino
group in 11 stabilizes the ring-open cation. In the
present work, an unfavorable equilibrium for the
cyclization can be overcome by irreversible loss of
methoxymethyl cation in the next step.12 It is important
to emphasize that cleavage of an oxocation from the
cyclic intermediate appears to be critical to the success
of all the cyclopentannelations involving alkoxyallene
intermediates, because it is the step which effectively
terminates the reaction and shuts down undesired pro-
cesses of the cyclic cation which would erode the
yield.13

In conclusion, an imino Nazarov reaction has been
described which gives rise to cross-conjugated a-
aminocyclopentenones. These materials can be pre-
pared in a single operation from readily available
a,b-unsaturated nitriles, and are potentially useful start-
ing materials for alkaloid synthesis. We are not aware
of any other published examples of an imino Nazarov
reaction.14
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